lunes, 7 de octubre de 2013

Estrellas

+En sentido general, una estrella es todo objeto astronómico que brilla con luz propia; mientras que en términos más técnicos y precisos podría decirse que se trata de una esfera de plasma que mantiene su forma gracias a un equilibrio hidrostático de fuerzas. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que ejerce el plasma hacia fuera, que, tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el del Sol se mantiene con la energía producida en el interior de la estrella. Este equilibrio seguirá esencialmente igual en la medida de que la estrella mantenga el mismo ritmo de producción energética. Sin embargo, este ritmo cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro que constituyen la evolución de la estrella.
-Formación:  Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico

-Ciclo de vida: Mientras las interacciones se producen en el núcleo, éstas sostienen el equilibrio hidrostático del cuerpo y la estrella mantiene su apariencia iridiscente predicha por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se prolonga en el tiempo, los átomos de sus partes más externas comienzan a fusionarse. Esta región externa, al no estar comprimida al mismo nivel que el núcleo, aumenta su diámetro. Llegado cierto momento, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta etapa el cuerpo entra en la fase de colapso, en la cual las fuerzas en pugna —la gravedad y las interacciones de fusión de las capas externas— producen una constante variación del diámetro, en la que acaban venciendo las fuerzas gravitatorias cuando las capas más externas no tienen ya elementos que fusionar. Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de su masa total, la fusión entrará en un proceso degenerativo al colapsar por vencer a las fuerzas descritas en el principio de exclusión de Pauli, produciéndose una supernova.
+Tipos de agrupaciones estelares:
CÚMULO GLOBULAR: Un cúmulo globular (globular cluster, en inglés) es un tipo de cúmulo estelar que consiste en una agrupación de 100.000 a 1.000.000 de estrellas viejas (es decir, de Población II), gravitacionalmente ligadas, con distribución aproximadamente esférica y que orbita en torno a una galaxia de manera similar a un satélite. Son estas estrellas viejas las que le dan a los cúmulos globulares su típico color dorado, sólo visible por medio de la fotografía en color.
Los cúmulos globulares están generalmente compuestos por cientos de miles de estrellas viejas, del mismo tipo que las que componen el bulbo de una galaxia espiral, pero confinadas en un volumen de sólo unos pocos pársecs cúbicos. Algunos cúmulos globulares (como Omega Centauri en la Vía Láctea y G1 en M31, la galaxia de Andrómeda) son extraordinariamente masivos, del orden de varios millones de masas solares. Otros, como M15 (otro cúmulo de la Vía Láctea), tienen núcleos extremadamente masivos, lo que hace sospechar la presencia de agujeros negros en sus centros.
Todas las estrellas de un cúmulo globular están aproximadamente en la misma etapa de su evolución, lo que sugiere que todas se han formado al mismo tiempo. Fue el reconocimiento de este hecho, estudiando los diagramas de Hertzsprung-Russell de cúmulos globulares, lo que dio lugar a una primera teoría de evolución de las estrellas.
Los cúmulos globulares poseen una densidad estelar muy alta, de manera que existen fuertes interacciones entre sus estrellas componentes y suelen ocurrir colisiones con relativa frecuencia. Algunos tipos exóticos de estrellas, como las rezagadas azules (blue stragglers, en inglés), los púlsares milisegundo y las binarias de poca masa emisoras de rayos X son mucho más frecuentes en los cúmulos globulares.
CÚMULOS ABIERTOS:Los cúmulos estelares abiertos son grupos de estrellas formados a partir de una misma nube molecular, sin estructura y en general asimétricos. También se denominan cúmulos galácticos, ya que se pueden encontrar por todo el plano galáctico.
Las estrellas de los cúmulos abiertos se encuentran ligadas entre sí gravitacionalmente, pero en menor medida que las de los cúmulos globulares. Las estrellas que albergan suelen ser jóvenes, masivas y muy calientes, y su número puede oscilar desde una decena hasta varios miles. Se encuentran repartidos en espacios del orden de la treintena de años luz y, debido a las fuerzas de marea producidas por el centro de la galaxia, se van disgregando lentamente.1 Solamente se observan cúmulos abiertos en galaxias espirales e irregulares, debido a que en ellas la formación estelar es más activa.
El diámetro medio de los cúmulos abiertos es de unos 10 pársecs (30 años luz), y aunque se han clasificado alrededor de 1.100 cúmulos abiertos en nuestra galaxia, se estima que la cifra podría ser cien veces superior.2 Este número tan escaso se debe a que los cúmulos que se encuentran a más de 5.000 años luz de nosotros (el diámetro de la Vía Láctea es de 100.000 años luz) no pueden ser vistos ni siquiera con los telescopios más potentes, pues el polvo galáctico dificulta su observación provocando lo que se conoce como absorción interestelar (el medio interestelar absorbe parte de la luz, llegando a la Tierra más debilitada), la cual, además, afecta en mayor grado a la luz azul, por lo que los cúmulos abiertos, ricos en estrellas azules y localizados especialmente en el disco galáctico, se ven muy perjudicados en este sentido.
Los cúmulos abiertos más jóvenes pueden estar contenidos aún por la nube molecular que le dio origen, iluminandola y originando una región H II. Con el paso del tiempo, la presión de radiación proveniente del cúmulo provocará que la nube molecular se disperse. Por lo general, se estima que el 10% de la masa de una nube de gas se condensará en forma de estrellas antes de que la presión de radiación haya expulsado el resto del gas.
Los cúmulos abiertos son objetos muy importantes para el estudio de la formación estelar. Debido a que todas las estrellas del cúmulo poseen la misma edad y similar composición química, se pueden estudiar más fácilmente los parámetros variables que en estrellas aisladas.
Las Híades son el cúmulo abierto más cercano a la Tierra, mientras que las Pléyades es el ejemplo más famoso de cúmulo abierto, el más brillante y conspicuo de todos.

+ La masa de una estrella es la cantidad de gramos de materia que posee. Es un número difícil de obtener, ya que la luz que recibimos de los astros no nos dice nada acerca de ese valor. Hasta el presente ha resultado imposible determinar la masa de una estrella en forma tan directa y precisa como lo hacemos con el Sol.
En primer lugar, masa es todo lo que está compuesto por partículas atómicas y al ser acelerado genera una fuerza. En el sistema métrico, la unidad de la masa es el kilogramo, kg.
Todas las partículas con masa tienen la propiedad de atraerse unas con otras debido a la fuerza de gravedad. Esta fuerza actúa de manera que cuanto más masa tengan las partículas mayor será la fuerza de gravedad entre ellas. Además, cuanto más cercanas estén las partículas, también mayor será la fuerza. En el sistema métrico, la unidad de la fuerza es el Newton, N.
Las estrellas nacen con muy diversas masas. La masa del Sol es de 2,000,000,000,000,000,000,000,000,000 toneladas, y sin embargo, existen estrellas con masas que van desde 1/10 hasta 150 veces la masa del Sol.
La gran mayoría de las estrellas tienen masas como la del Sol o menores, solo unas cuantas llegan a tener 8-10 veces su masa y realmente muy pocas logran más de 20-50 veces. De hecho, estrellas con 100 veces la masa del Sol, son notablemente excepcionales. Por alguna razón que aún no es bien entendida, existen muchas más estrellas poco masivas que masivas.

+Existen tres métodos para determinar las edades de las estrellas más viejas. Estos se basan en la medición de:

*La cantidad de combustible que ha consumido
*Su temperatura
*La radioactividad de sus elementos pesados

Las estrellas pasan la mayor parte de su vida convirtiendo hidrógeno en helio por medio de fusión nuclear. A medida que se va acabando el hidrógeno, la temperatura y la luminosidad de la estrella aumenta hasta el momento cuando se agota el hidrógeno. La etapa siguiente en la vida de la estrella consiste en usar el helio que queda en su núcleo como fuente principal de energía convirtiéndose en una estrella gigante roja. Las estrellas más masivas consumen su combustible (hidrógeno) más rápidamente.
En un diagrama H-R la etapa por la cual está pasando una estrella (y por lo tanto su edad) se puede saber por su posición en el diagrama. Las edades de los cúmulos globulares se obtienen haciendo un diagrama H-R en el cual se incluyen todas las estrellas del cúmulo. El diagrama muestra un “codo” correspondiente a las estrellas que terminan su ciclo de hidrógeno, abandonan la secuencia principal y comienzan su vida como gigantes rojas. La posición de este “codo” o punto de quiebre en la secuencia determina la edad del cúmulo. Entre más viejo sea el cúmulo existen más estrellas (de masa pequeña) que han continuado en la secuencia principal (las estrellas más masivas queman el combustible más rápidamente y por lo tanto abandonan la secuencia principal antes que las estrellas de menos masa) haciendo que la población general de la secuencia principal se extienda hacia la parte de estrellas más brillantes (el “codo” se extiende hacia la izquierda del diagrama).
Las edades de los cúmulos globulares obtenidas por el método del punto de quiebre en el diagrama H-R están en el rango de 8 a 15 Ga. Pero es importante anotar, sobre todo al comparar con la edad del universo, que la incertidumbre de estas mediciones puede ser de hasta 25%.

1 Giga-año (Ga) = 109 años = mil millones de años.


Las enanas blancas revelan su edad

Las enanas blancas se enfrían a medida que envejecen de una manera bien entendida por los modelos de evolución estelar. Es por lo tanto posible determinar la edad de un cúmulo globular estudiando la población de enanas blancas de menor brillo. Usando el telescopio espacial Hubble en el año 2002 un grupo de astrónomos hicieron mediciones del cúmulo Mesier 4 (M4) y lograron determinar con gran precisión una edad de 12.7 ± 0.7 Ga para las estrellas de este cúmulo. Esta determinación es consistente con la medición obtenida por el método del quiebre de la secuencia principal la cual es de 13.2 ± 1.5 Ga. Igualmente estos resultados están de acuerdo con el método independiente que usa el decaimiento radiactivo de uranio y torio el cual da 12.5 ± 3 Ga. En contraste, las estrellas en el disco de la galaxia tienen una edad de 7.3 ± 1.5 Ga.

+Un agujero negro u hoyo negro es una región finita del espacio en cuyo interior existe una concentración de masa lo suficientemente elevada para generar un campo gravitatorio tal que ninguna partícula material, ni siquiera la luz, puede escapar de ella. Sin embargo, los agujeros negros pueden ser capaces de emitir radiación, lo cual fue conjeturado por Stephen Hawking en los años 1970. La radiación emitida por agujeros negros como Cygnus X-1 no procede sin embargo del propio agujero negro sino de su disco de acreción.
La gravedad de un agujero negro, o «curvatura del espacio-tiempo», provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es previsto por las ecuaciones de campo de Einstein. El horizonte de sucesos separa la región del agujero negro del resto del universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo los fotones. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se conjetura que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros supermasivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.
-Clasificación según su masa:
  • Agujeros negros supermasivos: con masas de varios millones de masas solares. Se hallarían en el corazón de muchas galaxias. Se forman en el mismo proceso que da origen a los componentes esféricos de las galaxias.
  • Agujeros negros de masa estelar. Se forman cuando una estrella de masa 2,5 veces mayor que la del Sol se convierte en supernova e implosiona. Su núcleo se concentra en un volumen muy pequeño que cada vez se va reduciendo más. Este es el tipo de agujeros negros postulados por primera vez dentro de la teoría de la relatividad general.
  • Micro agujeros negros. Son objetos hipotéticos, algo más pequeños que los estelares. Si son suficientemente pequeños, pueden llegar a evaporarse en un período relativamente corto mediante emisión de radiación de Hawking. Este tipo de entidades físicas es postulado en algunos enfoques de la gravedad cuántica, pero no pueden ser generados por un proceso convencional de colapso gravitatorio, el cual requiere masas superiores a la del Sol.
Según sus propiedades físicas:
Para un agujero negro descrito por las ecuaciones de Albert Einstein, existe un teorema denominado de sin pelos (en inglés No-hair theorem), que afirma que cualquier objeto que sufra un colapso gravitatorio alcanza un estado estacionario como agujero negro descrito sólo por 3 parámetros: su masa , su carga  y su momento angular . Así tenemos la siguiente clasificación para el estado final de un agujero negro:
  • El agujero negro más sencillo posible es el agujero negro de Schwarzschild, que no rota ni tiene carga.
  • Si no gira pero posee carga eléctrica, se tiene el llamado agujero negro de Reissner-Nordstrøm.
  • Un agujero negro en rotación y sin carga es un agujero negro de Kerr.
  • Si además posee carga, hablamos de un agujero negro de Kerr-Newman.


    La Vía Láctea es la galaxia espiral en la que se encuentra el Sistema Solar y, por ende, la Tierra. Según las observaciones, posee una masa de 1012 masas solares y es una espiral barrada; con un diámetro medio de unos 100.000 años luz, estos son aproximadamente 1 trillón de km, se calcula que contiene entre 200 mil millones y 400 mil millones de estrellas. La distancia desde el Sol hasta el centro de la galaxia es de alrededor de 27.700 años luz (8.500 pc, es decir, el 55 por ciento del radio total galáctico). La Vía Láctea forma parte de un conjunto de unas cuarenta galaxias llamado Grupo Local, y es la segunda más grande y brillante tras la Galaxia de Andrómeda (aunque puede ser la más masiva, al mostrar un estudio reciente que nuestra galaxia es un 50% más masiva de lo que se creía anteriormente.El nombre Vía Láctea proviene de la mitología griega y en latín significa camino de leche. Ésa es, en efecto, la apariencia de la banda de luz que rodea el firmamento, y así lo afirma la mitología griega, explicando que se trata de leche derramada del pecho de la diosa Hera. (Rubens representó la leyenda en su obra El nacimiento de la Vía Láctea). Sin embargo, ya en la Antigua Grecia un astrónomo sugirió que aquel haz blanco en el cielo era en realidad un conglomerado de muchísimas estrellas. Se trata de Demócrito (460 a. C. - 370 a. C.), quien sostuvo que dichas estrellas eran demasiado tenues individualmente para ser reconocidas a simple vista. Su idea, no obstante, no halló respaldo, y tan sólo hacia el año 1609 d. C., el astrónomo Galileo Galilei haría uso del telescopio para observar el cielo y constatar que Demócrito estaba en lo cierto, ya que adonde quiera que mirase, aquél se encontraba lleno de estrellas.


    +Una galaxia es un conjunto de estrellas, nubes de gas, planetas, polvo cósmico, materia oscura y quizá energía oscura, unido gravitatoriamente. La cantidad de estrellas que forman una galaxia es incontable, desde las enanas, con 107, hasta las gigantes, con 1012estrellas (según datos de la NASA del último trimestre de 2009). Formando parte de una galaxia existen subestructuras como las nebulosas, los cúmulos estelares y los sistemas estelares múltiples.
    Color: Cuando nos referimos al color de las galaxias, por lo general estamos hablando de la población estelar. Las primeras galaxias, como por ejemplo las elípticas, no contenían ningún tipo de gas o polvo, lo que da como resultado que no se formen estrellas, lo cual provoca que la galaxia se vea dominada por un color rojizo, propio de este tipo de galaxias.
    Por otro lado, los cúmulos de tipo espiral sí forman estrellas y por lo tanto los identifica un color mas bien azulado. Ambos tipos están determinados, como dijimos, por el tipo de población, aunque también hay otros parámetros que afectan el color de las galaxias, como por ejemplo la presencia de polvo.

    Tamaño: El tamaño de las galaxias se ve determinado por la medición de su extensión angular en el cielo y la determinación de su distancia real. También hay estudios que revelaron que el tamaño de las galaxias también puede ser medido mediante la cantidad de materia oscura que contienen.

    En el caso de nuestra galaxia, la Vía Láctea, es considerada una galaxia grande: la mayoria de las estrellas se encuentran en un disco que tiene alrededor de 100.000 años luz de diámetro y 3000 años luz de ancho.

    Luminosidad: La luminosidad de las galaxias puede ser determinada midiendo su magnitud y combinándola con su distancia. En lo que respecta al tamaño, la determinación de la magnitud de las luminosidades es complicado, ya que es bastante difícil definir una localización precisa de lo que se podría llamar el "borde" de una nebulosa.

    Otro factor que complica la medición es el polvo cósmico, el cual puede disminuir la luminosidad considerablemente.



No hay comentarios:

Publicar un comentario